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ABSTRACT
Purpose The current study presents a Bayesian approach to
non-compartmental analysis (NCA), which provides the accurate
and precise estimate of AUC0

∞ and any AUC0
∞ -based NCA

parameter or derivation.
Methods In order to assess the performance of the proposed
method, 1,000 simulated datasets were generated in different
scenarios. A Bayesian method was used to estimate the tissue and
plasma AUC0

∞ s and the tissue-to-plasma AUC0
∞ ratio. The

posterior medians and the coverage of 95% credible intervals
for the true parameter values were examined. The method was
applied to laboratory data from a mice brain distribution study
with serial sacrifice design for illustration.
Results Bayesian NCA approach is accurate and precise in point
estimation of the AUC0

∞ and the partition coefficient under a
serial sacrifice design. It also provides a consistently good variance
estimate, even considering the variability of the data and the
physiological structure of the pharmacokinetic model. The appli-
cation in the case study obtained a physiologically reasonable
posterior distribution of AUC, with a posterior median close to
the value estimated by classic Bailer-type methods.
Conclusions This Bayesian NCA approach for sparse data anal-
ysis provides statistical inference on the variability of AUC0

∞-based
parameters such as partition coefficient and drug targeting index,
so that the comparison of these parameters following destructive
sampling becomes statistically feasible.

KEY WORDS Bayesian approach . drug targeting index .
NCA . partition coefficient . variance estimation

ABBREVIATIONS
AUC Area under the concentration-time curve
AUC0

t AUC from time zero to the last time point
AUC0

∞ AUC from time zero to infinity
a, b, c Large positive numbers in the prior settings indicating

vague priors
BAV Between-animal coefficient of variation
BCRP Breast cancer resistance protein
BCRPKO BCRP gene knockout (Bcrp1 (-/-) )
br The brain or any other tissue
C.I. Credible interval
C.I.* Confidence interval
C
*

i j Plasma and tissue concentrations of the i th animal at
the j th time point

Cj Concentration at the j th time point
Cj* Concentrations at the last three sampling time points
Ct Concentration at the last sampling time point
d Degree of freedom
DTI Drug targeting index
i Animal indicator
j Time point indicator
k, θ Superparameters of an Inverse-Gamma distribution
MVN (·,·) Multivariate normal distribution
m The total number of sampling time points
n Number of animals at each time point
N (·,·) Normal distribution
NCA Noncompartmental analysis
P-gp P-glycoprotein
PgpKO P-gp gene knockout (Mdr1a/b (-/-) )
pl The plasma
R Two-dimensional scale matric for Inverse-Wishart

distribution
SD Standard deviation
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SEj Standard error of Cj

tj Time corresponding to the j th time point
tj * Time corresponding to the last three time points in a

concentration-time profile
TKO Triple knockout (Mdr1a/b (-/-)Bcrp1 (-/-) )
Unif Uniform distribution
WAV Within-animal variability
WT Wild-type
λz The terminal elimination rate constant
μj Mean of the log-transformed concentrations at the

j th time point
μ* j The vector (μpl,j μbr,j)

T

Σj Within-animal precision variance-covariance matrix
of concentrations at time j

σj Variance or covariance of the plasma and brain con-
centrations at the j th time point

σ* Standard deviation of the log-normal distribution of
concentrations at the last three time points of a
concentration-time profile

α The intercept for the terminal phase regression
β The slope for the terminal phase regression

INTRODUCTION

In preclinical studies, the partition coefficient or so-called
equilibrium-distribution coefficient, expressed by the ratio of
tissue-to-plasma area under the concentration curve (AUC)

from time zero to infinity (
AUC∞

0;br

AUC∞
0;pl

, where the subscript br

denotes the brain or any other tissue under investigation and
pl denotes the plasma), has been widely used as a key metric to
reflect the tissue distribution of a compound (1,2). For in-
stance, when the compound under investigation is a substrate
of the blood–brain barrier (BBB) efflux transporter system, it is
becoming increasingly important to characterize the brain-to-
plasma partition coefficient in order to assess the brain pene-
tration of the compound in drug discovery (3). The ratio of
AUC from time zero to infinity (AUC0

∞) is also of primary
importance in bioequivalence studies. In addition, the drug
targeting index (DTI, the ratio of AUC0

∞ at target and sys-
temic site following administration into and sampling from
both sites) is widely used in regional drug delivery research
(4,5). Nevertheless, to determine the true tissue-to-plasma
AUC0

∞ ratio or the true DTI is usually not straightforward
due to experimental error and the variation between animals.

In order to obtain the statistical inference of AUC0
∞, it is

ideal to perform intensive serial sampling in each individual
animal. However, the withdrawal of a sufficient number of
blood samples from individual rodents for AUC determina-
tion is restricted due to technical and financial reasons. A
common scenario in preclinical pharmacokinetic studies with

small animals is the use of a sparse sampling approach with
few time points, in which each animal is not sampled at all
time points. Typically, in a serial sacrifice design (or so-called
“destructive sampling”), only one sample per animal is avail-
able (6). In this experimental scenario, more challenges arise in
the estimation of AUC0

∞ variance than in the intensive sam-
pling design. Accordingly, it is even more difficult to make the
statistical inference of the partition coefficient and DTI.

Under serial sacrifice design, there is theoretically no corre-
lation in drug concentrations between different time points,
however, the correlation between the tissue and the plasma
concentrations within an animal cannot be ignored (see Fig. 1).
The occurrence of plasma and tissue correlation at each time
point further complicates the estimation of the variability

around
AUC∞

0;br

AUC∞
0;pl

. As far as we know, no conventional method

provides solutions with the correlation taken into account.
In recent years, Bayesian approaches have been widely

applied to clinical trials (7–10) and pharmacokinetic (PK) &
pharmacodynamic studies (11,12). Unlike the frequentist view
that the conclusions made from the current work are indepen-
dent of prior work, the Bayesian approach acknowledges that
parameters are random variables that follow an unknown dis-
tribution instead of fixed constants, and that existing knowledge
could be incorporated into the analysis as an informative prior,
if any. The priors in Bayesian statistics reflect the investigator’s
beliefs in specific parameters before the beginning of the study
and the Bayesian approach allows estimation of a parameter of
interest by incorporating existing knowledge. When there is
little or no prior information available, a non-informative prior
can be used. The posterior distribution of a certain parameter is
derived via the simulation-basedmethod, with the knowledge of
prior distribution of the parameter estimates and the actual
data. Bayesian methods implement a simulation-based ap-
proach to obtain the point estimate of posterior expectation
and any quantile of interest, and it is applicable for sparse
sampling data. The most pertinent advantage of this proposed
approach is the ability in estimating the uncertainty of any
noncompartmental analysis (NCA) parameter through the pos-
terior samplings of the mean concentration at each time point.

The current study presents a novel Bayesian NCA ap-
proach using the BUGS (Bayesian inference Using Gibbs
Sampling) software, which provides the posterior distributions
of not only the AUC0

∞ but also of the AUC0
∞ ratio and the

DTI. Since no prior information was used in our study, non-
informative or vague prior distributions were assumed for all
model parameters.

THEORY

Bailer’s methodwas first proposed and has beenmost commonly
used to estimate the AUC from time zero to the last sampling
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time point (AUC0
t) based on the linear trapezoidal rule. The

corresponding variance of the estimated AUC0
t was calculated

based on the linear relation of normally distributed sample errors
of concentration at each time point (13). Bailer-Satterwaite
method improves the accuracy of the population variance esti-
mation by the Bailer’s method when sample sizes are not ade-
quately large, and expands the Bailer’s method for AUC confi-
dence intervals in sparse sampling (14). However, in a study
under serial sacrifice design, Bailer-Satterwaite method was still
unable to obtain the variance of the AUC0

∞, as described as
follows:

AUC∞
0 ¼ AUCt

0 þ
Ct

λz
; ð1Þ

where Ct represents the concentration at the last sampling
time point, and λz denotes the terminal elimination rate
constant that can be estimated by the linear regression from
the logarithm of concentrations at the last at lease three
sampling points.

Now the question at hand is how to estimate the
variance of AUC0

∞, and further conduct contrasts be-
tween different AUC0

∞ s. Yuan extends the Bailer’s
method to infinite time and construct confidence intervals
for AUC0

∞ (15). Yuan’s method proposed the following ap-
proximation for the variability of AUC0

∞ by assuming that all
the samples are independent and that λz is known and identical
for all tested animals:

SD AUC∞
0

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
.
2 t1−t0ð ÞSE0

� �2
þ
X
j¼2

m

1
.
2 t j−t j−2
� �

SE j−1

� �2
þ 1

.
2 tm−tm−1ð Þ þ 1

λz

� �2

SE2
m

vuut ; ð2Þ

where SD(·) denotes the standard deviation; SEj is the stan-
dard error of Cj, the concentration at the jth time point; SE0

denotes the standard error of the concentrations at time zero;
the subscript m is the total number of sampling time points;

and the λz represents the terminal rate constant. Yuan also
pointed out that because of the covariance between the mean
concentration at the jth time point and λz , Eq. 2
underestimated the variation of AUC0

∞. It was proposed that

Fig. 1 Correlation between
plasma and brain concentrations
after intravenous injection of
4 mg/kg cediranib into four
genotypes of FVB mice: wild-
type, Mdr1a/b (-/-) , Bcrp1 (-/-)
and Mdr1a/b (-/-) Bcrp1 (-/-) .
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one more term should be added to the variance of AUC0
∞ if λz

is estimated from an independent study. However, it is usually
hard to fulfill in practice. Thus, Yuan’s method also has some
inherent limitations because of its assumptions.Moreover, one
problem not addressed in Yuan’s method is the estimation of
the variance of partition coefficient, and therefore the vari-
ance of DTI, which requires more strict statistical assumptions
and complicated mathematical computation.

Alternatively, resampling-based approaches have become an
option to obtain the non-parametric confidence intervals of
AUC0

∞ or AUC0
∞ via bootstrapping and jackknifing (6,16–19).

However, the sample size for resampling is an important issue to
consider when using these methods (16,20). The coverage rate
of resampling-based approaches is a concern, especially for
bootstrap. The biggest disadvantage of resampling-based ap-
proaches is that it provides no guarantees on general finite-
sample and tends to be overly optimistic, which makes its
application on sparse sampling designs questionable (16).

Here in this paper, we proposed a Bayesian approach to
estimate the variance of AUC0

∞ and AUC0
∞-based parameters

such as partition coefficient and DTI. The Bayesian approach
is based on the conventional method of AUC0

∞ calculation
(Eq. 1). The main difference from conventional methods is
that the model based-mean concentrations at the different
time points are used for AUC calculation. The Bayesian
NCA approach presented here includes the following statisti-
cal assumptions:

Likelihood

Assume the plasma and the tissue (e.g. , the brain, in this paper)
concentration measurements were obtained on the i th animal

at the j th sampling time as C
*

i j (or Cpl,ij and Cbr,ij, respectively).
For each sampling time point, there were n animals for sample
collection. Log-normality was assumed for the individual-

specific PK measurement C
*

i j .

lnC
*

ij eMVN ðμ* j ;Σ jÞ; ð3Þ

Or explicitly,

lnCpl;ij ; lnCbr;ij

� � eMVN
μpl; j

μbr; j

	 

;

σ2pl; j σbr;pl; j
σpl;br; j σ2br; j

" # !
; ð4Þ

where MVN (·,·) denotes a bivariate normal distribution.
μ* j is a vector with two components (μpl,j and μbr,j),
representing means of the log-transformed plasma and
brain concentrations (Cpl,ij and Cbr,ij), respectively. Σj is
the within-animal precision matrix of concentrations at
the j th time point; and σj denotes the variance of the
plasma or brain concentrations or covariance of the

plasma and brain concentrations at the j th time point.
With the precision matrix, the correlation between Cpl,ij

and Cbr,ij was taken into account in model setting, which
could improve the precision of estimate.

Prior Specification

A non-informative (vague) prior distribution model was
constructed in the absence of prior knowledge about model
parameters. The prior distributions of μ pl,j and μ br,j were
assumed as uniform distributions (Unif) in a wide range, for
instance,

μpl; j eUnif −a; að Þ; μbr; j eUnif −a; að Þ; ð5Þ

where a is a large positive number indicating vague priors.
Typically, prior distributions of parameters are specified for

mathematical convenience to compute posteriors. Thus, the
inverse of the variance-covariance matrix (Σ−1), or so-called
precision matrix, was set as a 2-dimensional Wishart distribu-
tion, a probability distribution of random nonnegative-definite
symmetric matrices. Accordingly, the variance-covariance ma-
trix of concentrations at the j th time point (Σj ) follows an
Inverse-Wishart distribution as follow,

Σ j e Inverse −Wishart R; dð Þ; ð6Þ

where R is a two-dimensional scale matrix; d is the degree of
freedom. By setting small values as the diagonal elements of R
(e.g. , 0.01) and the degree of freedom (e.g. , 2), vague priors for
the correlation parameters were used.

R ¼ 0:01 0
0 0:01

	 


METHOD

The two Markov chain Monte Carlo (MCMC) chains were
generated by OpenBUGS version 3.2.2 (www.mrc-bsu.cam.
ac.uk/bugs/welcome.shtml) to obtain the posterior samples.
To ensure that stationary distributions for the parameters
were achieved, the first 10,000 samples for each chain were
discarded (termed “burn-in period”) and the following 20,000
samples were retained for inference. Sampler convergence
was assessed by visual inspection of the trace plot (i.e. ,
plotting the draw of the parameter against iteration number
for each Markov chain), autocorrelation, and the Gelman–
Rubin diagnostic for each parameter. The median of the
posterior samples (the 50th percentile) and 95% credible
interval (C. I., the range from the 2.5th to 97.5th percentile)
were summarized.
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The Calculation of AUC and Terminal Elimination Rate
Constant

Parameters such as AUC and the brain-to-plasma AUC ratio
were estimated within a Bayesian framework using R-package
“BRugs” version 0.8-1 (21). In the current study, even though
we could incorporate prior information into the analysis, we
used non-informative priors throughout. Both brain and plas-
ma AUC0

t were calculated from model-based mean concen-
trations by the trapezoidal rule. Equation 1 shows that AUC0

∞

is the sum of AUC0
t and Ct/λz. Thus it was desirable to

determine the terminal elimination rate constant λz to calcu-
late AUC from the last sampling time to infinity.

By assuming a first-order elimination process at terminal
phase including the last three time points (tj*) in the current
study, the terminal elimination rate constant λz can be esti-
mated using linear regression on the naturally-log-
transformed concentrations at the last three time points
(Cj*), which yields a log-normal likelihood as shown below.

lnC j� eN α–β˙t j�; σ�2
� �

; ð7Þ

where N(α–β ·tj *,σ
*2) denotes a normal distribution with the

mean (α–β ·tj*) and standard deviation σ*; α is the intercept
term and the slope term β defines the terminal elimination
rate constant λz. The priors for α and β were assumed to
follow the following uniform distributions:

α eUnif −b; bð Þ; β eUnif 0; cð Þ; ð8Þ

where b and c were large positive values indicating vague
priors.

Similar to the variance-covariance matrix Σj as described in
the “Theory” section, an inverse-gamma prior was specified for
σ* 2, which is also the standard conjugate prior for the normal
variance for computing convenience. The superparameters of k
and θ in the inverse-gamma distribution (Inverse-Gamma (k, θ))
were set to be 0.01 to ensure “vague” priors:

σ�2 e Inverse−Gamma 0:01; 0:01ð Þ: ð9Þ

SIMULATION

In order to examine the precision and coverage by Bayesian
approach in estimation of the AUC0

∞ and the tissue-to-plasma
partition coefficient, we applied the proposed Bayesian NCA
method to 1,000 sets of simulated data with serial sacrifice
design, and compared the obtained results with nominal
values of the parameters. The experiment was simulated in
R (Version 2.12.0) (22) and two scenarios were investigated:
animals with tissue-compartment efflux transporter activity
and animals without tissue-compartment efflux transporter

activity. Sampling from 28 animals was simulated at 7 arbi-
trary time points (4 animals per time point) following a serial
sacrifice design. The time points were set to be 0.5, 1, 2, 4, 8,
16, 24 h after the dose. A two-compartment PK model
consisting of the plasma compartment and the tissue compart-
ment was assumed (Fig. 2). A single i.v. bolus dose of 1,000
units was given to the plasma compartment at time zero.
Arbitrary PK parameters were defined in Table I. A 5-fold
transporter-mediated increase in clearance out of the tissue

compartment was simulated with the expected
AUC∞

0;br

AUC∞
0;pl

ratio of

0.2. Note that the PKmodel does not include saturation of the
transporter activities. Log-normally distributed between-
animal variability (BAV) and proportional residual variability
(or so-called within animal variability, WAV) were incorpo-
rated. For each simulated dataset, the posterior medians of

AUC0,pl
∞ , AUC0,br

∞ and
AUC∞

0;br

AUC∞
0;pl

along with 95% Bayesian cred-

ible intervals were obtained. The estimations were compared
to the true parameter values. The results by the proposed
method were assessed when data have different levels of
variability (5% BAV+5% WAV; 10% BAV+10% WAV;
20% BAV+10% WAV; or 20% BAV+20% WAV).

CASE STUDY

The Bayesian method was applied to and evaluated in a real-
world animal experiment. Briefly, brain and plasma levels of
cediranib were determined following intravenous injection
into wild-type (WT), P-glycoprotein (P-gp) gene-knockout
(PgpKO or Mdr1a/b (-/-) ), breast cancer resistance protein
(BCRP) gene-knockout (BCRPKO or Bcrp1 (-/-) ), and P-gp
and BCRP triple gene-knockout (TKO orMdr1a/b (-/-) Bcrp1

(-/-) ) mice (23). In this experiment, cediranib concentrations
were assumed to be normally distributed. In order to explore
whether the absence of P-gp or BCRP changes the blood–
brain barrier transport of cediranib, the brain-to-plasma par-

tition coefficient (i.e. ,
AUC∞

0;br

AUC∞
0;pl

) and the DTI

AUC∞
0;br

AUC∞
0;pl

� �
transgenic⋅mice

AUC∞
0;br

AUC∞
0;pl

� �
wildtype⋅mice

0BBB@
1CCCA

Fig. 2 Simulated two-compartment PK model.
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are the variables of interests for statistical comparison among
the four genotypes. The posterior medians with 95% credible

intervals for the
AUC∞

0;br

AUC∞
0;pl

in different genotypes were obtained

by utilizing the Bayesian approach. The posterior median and
95% credible interval of the plasma and brain AUC0

∞ in
different genotypes were compared with the point estimate
and 95% confidence interval (C. I. *) approximated by Yuan’s
method utilizing Eq. 2 and with the mean and 95% confi-
dence interval obtained with the jackknife resampling ap-
proach performed in R (resampling times=1,000). The pos-

terior medians with 95% credible intervals for the
AUC∞

0;br

AUC∞
0;pl

for

different genotypes were also compared with jackknife mean

and 95% confidence intervals. In order to evaluate the per-
formance of Bayesian method and compare it with the Bailer-
Satterthwaite method, the posterior medians and 95% Bayes-
ian credible intervals of the plasma and brain AUC0

t were also
computed and compared with the estimators obtained with
Phoenix WinNonlin® 6.1 (Mountain View, CA) utilizing the
Bailer-Satterthwaite method (14,24).

RESULTS

Simulation with Serial Sacrifice Design

Standard convergence diagnostics described in the “Method”
section did not reveal significant MCMC convergence issues.
Figure 3 illustrates the posterior median distributions for

AUC0,pl
∞ , AUC0,br

∞ and
AUC∞

0;br

AUC∞
0;pl

based on the 1,000 simulated

data sets for two extreme scenarios with and without tissue
efflux transporter activity with high variability (e.g. , 20%
BAV+20% WAV). The posterior medians of the three pa-
rameters were close to the preset true population mean. The

mean of the posterior medians for AUC0,pl
∞ , AUC0,br

∞ and
AUC∞

0;br

AUC∞
0;pl

based on the 1,000 simulated datasets are shown in Table II,
for both transporter activity scenarios. The posterior median
was used as an estimator to compare with the true parameter
since the log-normal distribution is right-skewed. Interestingly,

the estimation for
AUC∞

0;pl

AUC∞
0;pl

was even of higher accuracy (bias

≤5%) than the estimation for AUC0, pl
∞ (bias <20%). The

Table I Model Parameters of the Simulated Two-compartment Model

Parameter Population parameter value Between-animal variability

Scenario 1: No efflux transporter activity

Vp 50 Yes

Vb 50 No

CL12 10 Yes

CL21 10 Yes

CL10 20 Yes

Scenario 2: High efflux transporter activity

Vp 50 Yes

Vb 50 No

CL12 10 Yes

CL21 50 Yes

CL10 20 Yes

Fig. 3 Posterior median distributions for AUC0,pl
∞ , AUC0,br

∞ and
AUC∞

0;br

AUC∞
0;pl

based on the 1,000 simulated data sets for two extreme scenarios with and without
tissue efflux transporter activity with high variability.
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BAV andWAV had little impact on the estimation bias under
the serial sacrifice design. The proportions of simula-
tions in which the true population mean was covered by
the 95% credible interval are also shown in Table II. At
all tested levels of variability, the Bayesian 95% credible
interval had a good coverage rate (above 99%) of the
true population mean.

Based on the simulation of extreme-case scenarios that
either excluded the tissue efflux transporter activity or includ-
ed a transporter with high activity, the Bayesian approach was
able to adequately handle the parameters AUC0,pl

∞ , AUC0,br
∞

and
AUC∞

0;br

AUC∞
0;pl

and performs well for a variety of physiological

animal models (Table II).

Case Study

The Bayesian NCA approach has been applied to the brain
distribution study of cediranib in wild-type and gene-knockout
mice of brain efflux transporters, such as P-gp and BCRP; see
more details in our experimental work (23). The aim of the
animal pharmacokinetic study was to compare the cediranib

Table II Evaluation of the Robust-
ness of Posterior Estimators of

AUC0,pl
∞ , AUC0,br

∞ and
AUC∞

0;br

AUC∞
0;pl

Obtained by the Bayesian NCA
Approach Based on 1,000 Monte
Carlo Simulations

Parameter Nominal
population
mean

Averaged
posterior
median

Bias Probability of 95%
credible intervals
containing the true
population mean

No transporter scenario

Low Variability
(5% BAV +5% WAV)

AUC0,pl
∞ 50 56.16 12.3% 1

AUC0,br
∞ 50 54.22 8.4% 1

AUC∞
0;br

AUC∞
0;pl

1 0.9694 3.1% 1

Median Variability
(10% BAV +10%WAV)

AUC0,pl
∞ 50 56.39 12.8% 1

AUC0,br
∞ 50 54.17 8.3% 1

AUC∞
0;br

AUC∞
0;pl

1 0.9654 3.5% 1

High Variability 1
(20% BAV +10%WAV)

AUC0,pl
∞ 50 57.89 15.8% 0.998

AUC0,br
∞ 50 54.42 8.8% 1

AUC∞
0;br

AUC∞
0;pl

1 0.9473 5.3% 1

High Variability 2
(20% BAV +20%WAV)

AUC0,pl
∞ 50 57.42 14.8% 0.997

AUC0,br
∞ 50 53.94 7.9% 1

AUC∞
0;br

AUC∞
0;pl

1 0.9476 5.2% 1

High transporter scenario

Low Variability
(5% BAV +5% WAV)

AUC0,pl
∞ 50 57.78 15.6% 1

AUC0,br
∞ 10 11.86 18.6% 1

AUC∞
0;br

AUC∞
0;pl

0.2 0.2058 2.9% 1

Median Variability
(10% BAV +10%WAV)

AUC0,pl
∞ 50 58.07 16.1% 1

AUC0,br
∞ 10 11.85 18.5% 1

AUC∞
0;br

AUC∞
0;pl

0.2 0.2048 2.4% 1

High Variability 1
(20% BAV +10%WAV)

AUC0,pl
∞ 50 59.61 19.2% 0.999

AUC0,br
∞ 10 11.89 18.9% 1

AUC∞
0;br

AUC∞
0;pl

0.2 0.2010 0.50% 1

High Variability 2
(20% BAV +20%WAV)

AUC0,pl
∞ 50 59.07 18.1% 0.998

AUC0,br
∞ 10 11.78 17.8% 1

AUC∞
0;br

AUC∞
0;pl

0.2 0.2013 0.65% 1
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brain partitioning among different genotypes in order to
explore the role of brain efflux transporters in the brain
penetration of cediranib, an in vitro substrate of P-gp and
BCRP. Based on the Bayesian approach, the posterior me-
dians and 95% credible intervals of the cediranib plasma and

brain AUC0
∞s and

AUC∞
0;br

AUC∞
0;pl

in the wild-type, Mdr1a/b(-/-) ,

Bcrp1(-/-) , and Mdr1a/b(-/-) Bcrp1(-/-) mice were listed on
Table III. The posterior distributions of the cediranib DTIs

AUC∞
0;br

AUC∞
0;pl

� �
transgenic⋅mice

AUC∞
0;br

AUC∞
0;pl

� �
wildtype⋅mice

0BBB@
1CCCA for Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b

(-/-) Bcrp1(-/-) mice were also shown in the kernel density plots
(Fig. 4). The results confirmed the hypothesis that P-gp might play
a predominant role in excluding cediranib out of the brain, based
on the fact that the cediranib DTI in the Mdr1a/b(-/-) and
Mdr1a/b(-/-) Bcrp1(-/-) mice were approximately 20-fold higher
than the Bcrp1(-/-) mice.

The Bayesian estimators of
AUC∞

0;br

AUC∞
0;pl

were compared to

Yuan’s approximation and jackknife estimation in Table III.

The posterior medians of the AUC0,pl
∞ , AUC0,br

∞ and
AUC∞

0;br

AUC∞
0;pl

in

different mice groups were very similar to the point estimate
by Yuan’s method and by jackknife resampling, with all dif-
ferences ≤14%. As expected, the Bayesian 95% credible

intervals of AUC0,pl
∞ and AUC0,br

∞ were slightly wider than the
95% confidence intervals approximated by Yuan’s method.
The Bayesian 95% credible intervals of AUC0,pl

∞ , AUC0,br
∞ and

AUC∞
0;br

AUC∞
0;pl

were also slightly wider than the 95% confidence

intervals obtained with jackknife resampling.
The precision of Bayesian credible intervals for the esti-

mated plasma and brain AUCt
0 was compared to the classic

Bailer-type confidence intervals. Table IV shows that the
Bayesian posterior medians of AUC 0

t in those mice groups
were very close to the means (differences <15%) estimated by
the Bailer-Satterthwaite method with the Bayesian 95% cred-
ible interval coverage similar to the 95% Bailer-type confi-
dence intervals.

DISCUSSION

In a serial sacrifice tissue penetration study, assessing the
estimation precision of AUC-based parameters such as parti-
tion coefficient and DTI is often desired. Since the plasma and
tissue concentrations at the same time point are usually mea-
sured in the same animal, the correlation between the plasma
and tissue concentrations may not be ignored. The biggest
advantage of our proposed Bayesian NCA approach over
most commonly used Bailer-type methods is its capability in

Table III Bayesian PosteriorMedian and 95%Credible Interval (C.I.) of the Plasma and Brain AUC 0
∞ and Their Ratios after IntravenousDose of 4mg/kgCediranib in

Wild-type (WT), Bcrp1(-/-) (BCRPKO), Mdr1a/b(-/-) (PgpKO) and Mdr1a/b(-/-)Bcrp1(-/-) (TKO) Mice, and the Comparison with the Point Estimate and 95%
Confidence Interval (C.I.*) Estimated with the Bailer-based Approximation Extended by Yuan and with the Jackknife Resampling Approach

Parameter Bayesian estimation Yuan’s extention of Bailer’s method Jackknife resampling (N=1,000)

Posterior median 95% C.I. Mean 95% C.I.* Mean 95% C.I.*

AUC0,pl,WT
∞ 9,758 (8,883, 10,720) 9,697 (9,295, 10,099) 9,741 (9,311, 10,151)

AUC0,br,WT
∞ 2,652 (2,252, 3,085) 2,661 (2,561, 2,761) 2,750 (2,586, 2,930)

AUC0,pl,BCRPKO
∞ 11,420 (9,446, 15,780) 10,220 (8,748, 11,692) 10,596 (9,401, 12,071)

AUC0,br,BCRPKO
∞ 2,090 (1,805, 2,414) 1,997 (1,915, 2,079) 2,049 (1,906, 2,175)

AUC0,pl,PgpKO
∞ 7,753 (7,140, 8,351) 7,785 (7,558, 8,012) 7,752 (7,462, 8,016)

AUC0,br,PgpKO
∞ 52,460 (50,290, 54,540) 52,560 (51,751, 53,369) 53,947 (53,043, 54,908)

AUC0,pl,TKO
∞ 9,581 (8,690, 10,500) 8,408 (8,163, 8,653) 8,622 (8,166, 8,974)

AUC0,br,TKO
∞ 53,500 (48,960, 58,080) 51,966 (50,733, 53,199) 52,564 (50,533, 54,686)

AUC∞
0;br

AUC∞
0;pl

� �
WT

0.27 (0.24, 0.31) 0.27 – 0.28 (0.26, 0.31)

AUC∞
0;br

AUC∞
0;pl

� �
BCRPKO

0.18 (0.13, 0.22) 0.20 – 0.19 (0.17, 0.22)

AUC∞
0;br

AUC∞
0;pl

� �
PgpKO

6.77 (6.30, 7.30) 6.75 – 6.96 (6.70, 7.24)

AUC∞
0;br

AUC∞
0;pl

� �
TKO

5.59 (5.22, 5.97) 6.18 – 6.10 (5.75, 6.54)
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evaluating the precision of AUC-based parameters of interest
in a serial sacrifice design based on their posterior distribu-
tions. Unlike other approaches, this approach also inherently
takes into account the correlation between tissue and plasma
when calculating the plasma and tissue AUC.

Our approach does not rely on any compartmental as-
sumption but the first-order kinetics assumption of the termi-
nal elimination phase. The simulation and case study in the
model assumed linear distributional kinetics, i.e. , no saturation
of the efflux clearance processes. However, the data analysis

method to determine the statistical differences in the
AUC∞

0;br

AUC∞
0;pl

would still be valid in the case of saturation of efflux, however
the inference as to why the AUC ratios differ may be affected.

Bayesian credible intervals allow direct probability state-
ments on the uncertainty of a parameter estimate (25). It has
been shown that the posterior median is a robust estimator for

data with non-symmetric distributions, such as multimodal or
skewed distributions (26). Since the elimination phase rate
constant was determined based on the assumption that termi-
nal phase concentration data follow the log-normal distribu-
tion, the tail behavior of the non-symmetric distribution may
affect the simulation-based sampling. That was the reason
why the posterior median was used as a preferred estimator,
along with the credible interval.

The performance of the Bayesian approach for AUC0,pl
∞ ,

AUC0,br
∞ , and

AUC∞
0;pl

AUC∞
0;pl

in 1,000 simulated data sets with different

levels of variability suggested that the Bayesian NCA ap-
proach is accurate and precise in the estimation of AUC0

∞

and the tissue-to-plasma partition coefficient for serial sacrifice
designs. The simulations indicated that the Bayesian credible
interval gave good coverage of the population parameter, a
known quantity. The robustness of the application of this
approach does not rely on the variability of the data or the
physiological structure of the pharmacokinetic model.

In the case study, the Bayesian estimators of the
plasma and brain AUC0

∞s were compared with the point
estimates and 95% confidence intervals estimated by the
Bailer’s approximation extended by Yuan and by jack-
knife resampling. The Bayesian posterior median and
95% credible intervals of brain-to-plasma partition co-
efficients were also compared to the jackknife mean and
95% confidence intervals. Yuan’s method provided
tighter confidence intervals than the Bayesian approach,
since Yuan’s method inherently underestimates the var-
iance of AUC0

∞ because of its double usage of the last
sampling time point for estimation of λz and calculation
of the AUC from the last sampling time up to infinity
(15). Although in the Bayesian approach, the observed
data at the last sampling time were used in determina-
tion of posterior distributions of both Ct and λz, the
samplings of λz and Ct were separated. Hence, it was
anticipated that the Bayesian credible intervals are
wider than the Yuan’s confidence intervals. It is also
not surprising that the jackknife confidence intervals
were also narrower than the Bayesian credible intervals
when the sample size is extremely small (e.g. , in our
case, only four replicates at each time point). However,
this derived jackknife intervals might not be reliable. As
Efron points out, resampling intervals are not exact and
may sometimes be vulnerable in small-sample situations
(20). In contrast, Bayesian approach in nature can avoid
the dilemma of frequentist point estimation caused by
the small sample size. The posterior distributions of the
parameters of interest depend on both prior settings and
study data, and small sample size is usually not an issue
in Bayesian analysis. As such, our proposed approach is
robust and adequate in the case study. Moreover, our
approach considers the brain and plasma data

Table IV Comparisons of Bayesian Posterior Median and 95% Credible
Interval (C.I.) for the Plasma and Brain AUC0

t after Intravenous Dose
of 4 mg/kg Cediranib in Wild-type (WT), Bcrp1(-/-) (BCRPKO),
Mdr1a/b(-/-) (PgpKO) and Mdr1a/b(-/-)Bcrp1(-/-) (TKO) Mice with
Bailer-Satterthwaite Approximation of Mean and 95% Confidence
Interval (C.I.*) Estimated by Phoenix WinNonlin®

Parameter Bayesian estimation Bailer-Satterthwaite
estimation

Posterior
median

95% C.I. Mean 95% C.I.*

AUC0,pl,WT
t 9,208 (8,386, 10,090) 9,200 (8,487, 9,913)

AUC0,br,WT
t 2,455 (2,066, 2,879) 2,449 (2,131, 2,767)

AUC0,pl,BCRPKO
t 9,494 (8,240, 10,830) 8,393 (7,634, 9,152)

AUC0,br,BCRPKO
t 2,030 (1,750, 2,343) 1,947 (1,726, 2,168)

AUC0,pl,PgpKO
t 7,384 (6,774, 7,980) 7,396 (6,920, 7,872)

AUC0,br,PgpKO
t 48,160 (46,120, 50,110) 48,186 (46,604, 49,768)

AUC0,pl,TKO
t 9,490 (8,603, 10,410) 8,307 (7,509, 9,105)

AUC0,br,TKO
t 52,710 (48,170, 57,220) 51,107 (47,348, 54,866)

Fig. 4 Posterior distributions of the brain drug targeting index (DTI) for the
three transporter knockout mice. Blue: Bcrp1(-/-) mice; Red : Mdr1a/b(-/-)
mice; Green : Mdr1a/b(-/-)Bcrp1(-/-) mice.
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correlation in model setting, which is another big ad-
vantage over the other methods. Although resampling
maintains the data correlation between tissue and plas-
ma within same animals, the AUC calculation based on
resampling approaches is still unable to account for the
tissue-and-plasma correlation, since presumably, the tis-
sue and plasma AUCs are calculated independently.

In parallel, the point estimates and the Bailer-type confi-
dence intervals for the AUCt

0 s were compared to the Bayesian
posterior medians and credible intervals in the case study. The
purpose of the comparison was simply to show that the non-
informative Bayesian method produced physiologically rea-
sonable parameter estimations. Since the way Bayesian ap-
proach determines the terminal elimination phase was slightly
different from Phoenix WinNonlin®, AUC0

∞ was not selected
as a parameter to compare with the Phoenix WinNonlin®
calculation results. PhoenixWinNonlin® calculates the termi-
nal phase rate constant by repeating regressions using the last
three points then the last four points, last five, etc. , until
obtaining the best linear fit (27). But the current study used
only the last three time points with non-zero concentrations
for the purpose of computation simplicity. Instead of AUC∞

0 ;

the estimated AUCt
0 was compared. Results showed that the

Bayesian posterior estimates of the AUCt
0 in the four different

mice models were very close to the mean and 95% confidence
interval estimated by the Bailer-Satterthwaite method with
Phoenix WinNonlin®.

One criticism on the application of the Bayesian method is
that the setting of the prior distribution is subjective and
different priors may yield different posterior results. But the
use of non-informative priors (e.g. , the uniform prior for log-
concentration means) in this work can make this “subjectivity”
minimal. Furthermore, incorporation of informative priors
under some circumstances may be very helpful to investigate
parameters. The Bayesian approach provides a flexible and
powerful tool to borrow strength from other studies.

In the present simulation, the error at each sampling time
was assumed to follow a log-normal distribution (proportional
to the mean value of concentrations). Thus, the concentration
data were log-transformed and the entire analysis was done on
a log-scale. In the animal study, the normal likelihood worked
adequately well and no significant difference between the
normal likelihood and the log-normal likelihood was in that
case. Other appropriate assumptions of likelihood and priors
are worth exploring in further studies. However, when prior
knowledge is available, it is strongly recommended to incor-
porate informative priors into the Bayesian approach. This
will help narrow down the credible intervals of the Bayesian
estimate and generate a more reliable posterior distribution.
Another disadvantage of the Bayesian NCA approach is that it
requires knowledge of Bayesian statistics and that the program-
ming may be difficult to a non-statistician. The OpenBUGS

code used in this analysis is included in the Supplementary
Material.

CONCLUSION

Our proposed Bayesian approach provides a useful tool for
variance estimation of the AUC0

∞, the tissue-to-plasma ratio of
AUC0

∞, and the DTI, following destructive sampling. Posteri-
or distribution of other NCA parameters could be obtained in
likewise fashion. When prior knowledge is available, it is
strongly recommended to incorporate informative priors into
the Bayesian approach, in order to obtain a more reliable
posterior estimation.
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